Indian Statistical Institute	
Second Semester 2004-2005	
Mid Semestral Exam	
B.Math I Year	
Analysis II	
Date:10-03-05	[Max marks : 35]

Time: 3 hrs

1. Let (A, d), (B, e) be metric spaces satisfying Bolzano-Weirstrass property. On $Y = A \times B$ define a metric m by

$$m((a_1, b_1), (a_2, b_2)) = [d^2(a_1, a_2) + e^2(b_1, b_2)]^{\frac{1}{2}}$$

Show that (Y, m) has the Bolzano Weirstrass property. You can assume that m is a metric. [2]

- 2. Let $f: (X, d) \to (Y, m)$ be uniformly continuous. Show that f maps Cauchy sequences into cauchy sequences. [2]
- 3. Give an example of a C^1 function $f: [0,1] \to R^2$ such that $f(0) = \overset{\sim}{f(1)}$, but for each t in [0,1] $f'(t) \neq (0, 0)$ and prove your claim. [2]
- 4. By using Lagrange method of multipliers find the distance between the two curves C, L where

$$C = \{(x, y): x^2 + y^2 = 1\} \text{ and} L = \{(x, y): x - y = 10\}$$

[8]

[4]

[1]

5. Show that the function

$$f(x,y) = 2x + 4y - x^2 y^4$$

has a critical point, but no local maxima or minima.

- 6. Let $G(x, y) = (x^2 + y^2) \sin(x^2 + y^2)^{-1}$ for $(x, y) \neq (0, 0)$, and G(0, 0) = 0. Note: that G(x, y) = G(y, x)
 - (a) Find $\partial G/\partial x$, $\partial G/\partial y$ on $R^2 \setminus (0,0)$. [2]
 - (b) Show that both $\partial G/\partial x$ and $\partial G/\partial y$ are continuous on $R^2 (0, 0)$.
 - (c) Show that G has total derivative on $R^2 \setminus (0,0)$. [1]
 - (d) Show that $\frac{\partial G}{\partial x}(0,0) = 0 = \frac{\partial G}{\partial y}(0,0).$ [1]
 - (e) Show that G has total derivative at (0,0) also. [2]
 - (f) Show that $\partial G/\partial x$ is not continuous at (0,0). [2]

- 7. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = xy. $\frac{x^2 y^2}{x^2 + y^2}$ on $\mathbb{R}^2 \setminus (0, 0), f(0, 0) = 0$. Show that both $\frac{\partial^2 f}{\partial x \partial y}(0, 0), \quad \frac{\partial^2 f}{\partial y \partial x}(0, 0)$ exist and are different. [4]
- 8. Let $\phi : R \to R$ be given by $\phi(x) = \exp[-1/x]$ for x > 0, 0 for $x \le 0$. Assume that ϕ is C^{∞} .

a) Let $-\infty < a_1 < a_2 < b_1 < b_2 < \infty$. Construct a C^{∞} function Ψ such that $\Psi = 1$ on $(a_2, b_1), 0$ outside $[a_1, b_2], \Psi \ge 0$. [4] b) Let $0 < r_1 < r_2$. Find a C^{∞} function $g : R^2 \to R$ such that

$$g(\underset{\sim}{x}) = 1 \quad \text{for } ||\underset{\sim}{x}|| \le r_1$$
$$= 0 \quad \text{for } ||\underset{\sim}{x}|| \ge r_2$$

Hint: $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x_1, x_2) = x_1^2 + x_2^2$ is a \mathbb{C}^∞ function. [1]